Input: $\network=$ with $\tau_e \gt 0$, $u$ right-constant, $f$ IDE until $T$ with r.-c. flow rates
Output: constant extension of $f$ to IDE until $T+\eps$ for some $\eps \gt 0$
(1) Fix topological order $v_n \prec \dots \prec v_1 = t$ wrt. $(V,\bar E(T))$
(2) Set $x_e \coloneqq 0$ f.a. $e \in \edgesFrom{t}$ and $a_t \coloneqq 0$
(3) For $i = 2, \dots, n$ Do
(4) .. Determine $(x_e) \in \IRnn^{\edgesFrom{v_i}}$ satisfying ($\ast$)
(5) .. Set $a_{v_i} \coloneqq \min\Set{\psi_e(x_e)+a_w \SMid e=v_iw \in \edgesFrom{v_i}\cap\bar E(T)}$
(6) Set $g^+_e(\theta) \coloneqq \begin{cases}f^+_e(\theta),&\text{ if }\theta \lt T\\x_e,&\text{ else}\end{cases}$ and $g^-_e \coloneqq \Phi_e(g^+_e)$ f.a. $e \in E$
(7) Choose $\eps \gt 0$ such that $g$ is IDE until $T+\eps$
(8) Return $(g^+_e,g^-_e)$ and $\eps$